
CONTACT PROBLEM FOR A LAYERED INHOMOGENEOUS AGING 

CYLINDER REINFORCED BY A RIGID RING 

A. V. Manzhirov and V. A. Chernysh UDC 539.376 

i. Problem Statement. We examine the contact interaction of rigid supporting ring 
with a two-layer viscoelastic inhomogeneous cylinder acted upon by an external pressure. 
We assume that the layers of the cylinder are made of different materials at different times. 
The external layer, of inner radius a and outer radius b, is made at the time ~. The 
internal layer, of thickness h, is made at the time ~2. The value of h is much smaller 
than the characteristic size of the contact region Z and of the inner radius of the two- 
layer cylinder (a-h). The layers are in smooth contact. At the time ~0 a rigid ring is 
mounted in the cylinder with tension 6 0. The surface profile of the ring is g(z). Ex- 
ternal pressure P(t) is then applied. The ring is at a sufficient distance from the cylind- 
er ends for their effect on the stressed state under the ring itself to be neglected. The 
endfaces are stopped with rigid plugs that prevent axial movement (Fig. i). 

In cylindrical coordinates we have the following characteristic equations [1-3]: 

o7~ = ~i (~- ~+) (r + N0 [(I -- ,0 +~i> + ~ (~) + ~,)], 
(t - 2~ 0 (i + ~0 

= (I -- 2v 0 (i + v 0 (I + N 0 [(I -- vi) e$) + vi (e~'> + e~~ 

o~ ~ = ( + , - ~ + . . 7 ~ + ) ( I  + s+)[(1 - , 0  + ,;+ 

++.~+] = E+ ( t  - ++) 
t "t- 'q (I + Nt)e+.i~ )` (I + Ni) - t  = (I - -  Li) ,  

t 

Nico (t) = y o (T) Ri (t - -  Ti ,  ~C - -  T+) dr, 
"CO 

t 

Lico (t) = ~ co (~) K~ (t - -  Ti, ; - -  T 0 dz,  
T O 

Ki  (t, *) = Ei (T) o ~ + Ci (t, ~) , 

(1.1) 

2 identifies the characteristics of the internal and external where the subscript i = i, 
layers of the cylinder, respectively; Or(i) = Or(i)(t, r, z), etc., are the components of 

the stress tensor; er (i) = er(i)(r, z, t) are the components of the strain tensor; Ei(t - 

T i) are the instantaneous elastic strain moduli; v i are constant Poisson's ratios; Ci(t, 

�9 ) are the measures of creep of the cylinder layers; Ki(t - ~i, ~ - ~i) are creep nuclei; 

Ri(t - ~i, ~ - ~i ) are their resolvents; r and z are the radial and axial coordinates; t 

is the current time; | is the identity operator. 

Equilibrium equations and the relations of deformations and displacements also take 
place [u i = ui(r, z, t), w = wi(r, z, t) are the radial and axial displacements, respective- 

ly]: 

Oo~'/Or + 0~2/0~ + (~7 ~ -  o~) / r  O, (1 .2)  
O~PlOr + 0o~+>10~ + +~?/r = O; 

~>= ou#o,.. ~> = u+lr, ~ >  = ow~Ioz, (1.3) 

e~ ) = (1/2) (Ou~lOz + OwdOr). 
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2. Derivation of the integral Equation for the Contact Problem. We first solve an 
auxiliary problem, substituting for the rigid ring a certain distributed load p(z, t), which 
are nonzero, on the segment I zl <_ s We will find the radial displacement of the inner 
surface of the two-layer cylinder, presenting this solution of the auxiliary problem as 
the result of superposition of solutions of two independent problems: A) describing the 
effect of the load upon an infinite two-layer cylinder in absence of an external pressure; 
and B) describing the plane strain of a two-layer cylinder acted upon by a uniform external 
pressure. 

We first consider problem A. We add to relations (1.1)-(1.3) the boundary conditions 

r = a - - h :  a~ ~ = p ( z , t ) ,  ~m~ =0 :  
(2 .1 )  

r = ~: o9~----- o ~ ,  u~ = u~, "~92 = ~ . ~  = O; 

," = b: o >  = O, ~-~" = O: I ~ 1 - ' - ~ ' :  ~ 7  ~, ~ ,  o9~, ~-72-+ O. 

In view of the relative smallness of the thickness of the inner layer (h < t) and 
assuming that either the compliances of the elements of the different layers are of the same 
order of magnitude or the compliance of the elements of the internal layer is greater, we 
e3Pa4d ~rz (1) as a series in thepowersof (a -r)s -I and limit the analysis to linear terms 
[ , ]. Now, taking into account boundary conditions (2.1) for ~rz If) at r = a-h for r = 
a, we obtain ~rz (I) -- 0. From the second equilibrium equation in (1.2) we have Oz(1) = 

f(r, t). However, Oz (~) + 0 as Izl + ~ [see (2.1)]. Therefore, Oz (~) -- 0. Hence, on the 
basis of (1.1) for Oz (I) we find 

~p) = - ,,, (1 - vO -~  (~P~ + ~ ' ~ ) .  ( 2 . 2  ) 

The first equilibrium equation in (1.2), taking into account (i.i), (2.2), and ~rz (1) -- 0, 
appears as [the prime denotes the derivative with respect to r] 

(~ l ) t  ~_ ~18(1/) (~ __ %21)--I _{_ ( ~ I )  __ [3~I}) r -1  = O, (2, 3) 

Integrating (2.3) we establish with the aid of the identity (gr (I) - ~0(1))r -z = ~O(I) ' 
that Er (I) + ES(li = 2T(z, t). By virtue of (i.3), 

OujOr --k u / r  = 2 T  (z, t). ( 2 .4 )  

The s o l u t i o n  of  (2 .4 )  can be w r i t t e n  in t h i s  form: 

u I = rW (z, t) + ~  (z, t)r -1. (2 .5 )  

Splicing the radial displacements on the conjugation surfaces of layers [see (2.1)], we 
now obtain the expression 

@ (z, t) = u 2(a,  z, t ) a - - ~ ( z ,  t) d 2. ( 2 . 6 )  
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Substituting (2.6) into (2.5), we have 

Ur = ~t r (z, t ) (r  - -  a*-r -1) -f- u2(a , z ,  t ) a r - ' .  ( 2 . 7 )  

On t h e  b a s i s  o f  ( 2 . 7 ) ,  ( 1 . 3 ) ,  and ( 2 . 2 ) ,  we d e t e r m i n e  C r ( ~ ) ,  r  and r  With t h e  
a i d  o f  ( 1 . 1 ) ,  we o b t a i n  

a(r x) = E I ( t  - -  V~)-~ (I + N~) 1~ (z, t) [1 + vl + (1 - -  v,)a~'r-2]--(  1 - - v~)ar - 'u~(a ,  z, t)}. ( 2 . 8 )  

S a t i s f y i n g  bounda ry  c o n d i t i o n  ( 2 . 1 )  a t  Or (1)  f o r  r =  a - h ,  t a k i n g  i n t o  a c c o u n t  ( 2 . 8 )  and 
ignoring values on the order of ha -I relative to unity, we find 

V (z, t) = (1/2) [ ( I  - -v~)  (I - -  L,) p (z, t) El1 + (1 - -  va) u~ (a, z, t) a-~]. ( 2 . 9 )  

The r a d i a l  d i s p l a c e m e n t  o f  t h e  i n n e r  s u r f a c e  o f  t h e  c y l i n d e r  and t h e  s t r e s s  (~r (~)  a t  
r = a , by v i r t u e  of  ( 2 . 7 ) - ( 2 . 9 ) ,  can be w r i t t e n  as  

u~ (a - -  h, z, t) = - -  (t - -  v0"- (I - -  L1 )  p (z, t) E-(lh + u, (a, z, t), 
( 2 . 1 0 )  

O(1)(a, g, t) = p (Z, t), 

Here  u2( ia ,  z ,  t )  i s  found  f rom t h e  s o l u t i o n  of  t h e  p rob lem f o r  t h e  e x t e r n a l  l a y e r  under  
t h e  f o l l o w i n g  bounda ry  c o n d i t i o n s  [ s e e  ( 2 . 1 )  and ( 2 . 1 0 )  f o r  o r ( 1 ) ] :  

r ---- a: (~:) ---- p (z, t), L~-(2) = 0; r ---- b: (j~2) ---- 0, ~(~) = 0. ( 2 . 1 1  ) 

The stressed-strained state of the external layer is determined by the compatibility 
principle [5] and the instantaneous elastic solution of the problem constructed on the 
basis of Galerkin's representation [6]: 

(p (r, z) = ~ [A (a) I o (ar) § B (a) a r I  1 (ar) + C (a) K o (ar) + D @) o~r K 1 (or)] e ''=z do, 

AA~ = 0, A ----- 02~Or 2 -~- r-lO/Or @ 02/Oz *, 

~  = N ~a~ - Or' J' = N (2 - , , )  a~  - 0 ;  J '  

o~ 2) = ~  ~ . , a ~ - - y ~ j ,  ,,~ = ~  ( t--v~)Aq~--0~ .. j ,  

t + v~ 0~r t + v~ [ (t+ v , )  A T - -  0"__~ ] 
E, - 

where 10(at), 11(ar), K0(ar), Kz(ar) are the Bessel functions of imaginary arguments. The 
expression for the radial displacement of the inner surface appears as 

u~(a ,z , t )  = 2 ( I - - ~ ) ( I _ L . ,  ) ~ p(~, t)k(z,~)d~, ( 2 . 1 2 )  
- - l  

= j ( , -  L = o + (o)]  k 
0 

S (a) = a~ -1 + b~ -1 + 

Al(O) 
B1(o) 

a~176 (o) - -  b~ (o) + a4abA~ (a) - -  a~ (o), 

= lo(aa)Ko(ob) - -  Io(ab)Ko(aa), ' 

= Io(oa)Ki(ob ) --}- Ii(ab)Ko(oa),  

Cl(o ) = Io(ab)Kl(aa ) + II(aa)Ko(ab),  

Dl(O ) ---- I~(oa)K1(ob) - -  I i (ob)Kl(aa) ,  

a ~  2 (1 - -v2)a  -1 + a o  ~, b ~  -I + bo z, 

Here the kernel k(z, ~) retains all the basic characteristics of the kernels of plane con- 
tact problems [4]. 

Thus, the radial, displacement of the inner surface of a two-layer cylinder in problem 
A is expressed by the following formula [see (2.10)-(2.i2)]: 

! 

ul(a h , z , t )  ( i - - v ~ ) h ( I  L~)p(z , t )E-[~( t  x l ) - - - ( l - v 2 ) ( I - - L 2 )  p ( ~ t )  k(z,~)d~. ( 2 . 1 3 )  
. . . . .  .~ E~ (t - T2) 

--l 
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The plane strain of the cylinder in problem B is investigated under the boundary condi- 

tions 

The closed solution of this problem allows one to write the displacement u I at r = 

a -- h :  
u, (a - -  h, z, t) = - -  ( [  - -  L1) (I  + Na) 0 2 (t) (I  - -  L2) P (t) E.~ 1 (t - -  za), 

b -2 o~ (t) = b~0 (t), 0 (t) = [b~E2 (t - -  "c0 E ?  ~ (t - -  T~) + ~] , 

b, ---- 2( i  - -  v , ) (a  - -  h)-Z(i  + % ) ( ( t  - -  2v~)a + ( 2 . 1 4 )  

+ a"-b~ "a _ a2)-1[( 1 -- 2v~)ab-Z + a-l]}, 

b~ : (1 + v~)-~[a -2 -- (a -- h)-2](l + v~)a~b ~ • 

X i b2 -- a2) -1 [({ -- 2v2)ab -2 + a -1 ], 

b~ -= (1 -- 2v~) (a -- h) -~ a + a -2, Na~0 (t) = S 0) (~) B~ (t, ~) dx, 

w h e r e  R 3 ( t ,  x )  i s  t h e  r e s o l v e n t  o f  t h e  k e r n e l  K s ( t ,  ~) = [b~K=( t  -- x2 ,  ~ - x 2 ) E z ( ~  - x l )  x 
E 2 " ~ ( x  - x : )  + b3Kl(t -- r  z - ~ ) ] O ( t ) .  

The  r a d i a l  d i s p l a c e m e n t  o f  t h e  i n n e r  s u r f a c e  o f  a t w o - l a y e r  c y l i n d e r  i n  an a u x i l i a r y  
p r o b l e m  o f  t h e  e f f e c t  o f  a n o r m a l  d i s t r i b u t e d  l o a d  p ( z ,  t )  and  t h e  e x t e r n a l  p r e s s u r e  P ( t )  
a p p l i e d  t o  t h e  c y l i n d e r  i s  o b t a i n e d  by  t a k i n g  t h e  sum o f  ( 2 . 1 3 )  and ( 2 . 1 4 ) ,  

S e t t i n g  p ( z ,  t )  = - s ( z ,  t )  and e q u a t i n g  t h e  r e s u l t i n g  d i s p l a c e m e n t  t o  t h e  t e n s i o n  o f  
t h e  r i n g ,  w i t h  a d j u s t m e n t  f o r  t h e  p r o f i l e  o f  t h e  r i n g  s u r f a c e  6 o - g ( z ) ,  we w r i t e  th.e i n t e g -  
r a l  e q u a t i o n  f o r  t h e  c o n t a c t  p r o b l e m ;  

l 

E~ (--7--- ~ 0 + (I -- L.~) x ( 2 . 1 5 )  
~ (t  - ~)  

--l 

• k (z, ~) d~ = (; -- L~) (~ + N~) 0~(t) (i -- L~) P (t) E7 2 (t -- ~) + ~0 -- g (:) (I ~ I<~ 0. 

3. Solution of the Integral Equatign o2 the Contact Problem__~. In (2.1) we change the 
variables according to the following formulas 

z*  = zt - I ,  ~* = U -~,  t* = t~-$ I, "c* = v ( $  ~, 

"t~ = T~To ~, T., = "c2"~o ~, 50 = 60t -1, k* (z*, ~*) = ~- lk  (z, U, 

q* (z*,  t*) = 2 ( I  - -  v~) q (z, t) E71 (t - -  T2), g* (z*) = g (z) l -~, 

P *  (t*)  = 2 (1  - -  "r P (t) E-~ 2 (t - -  T2), O~ (t*) = (1/2) 01 it) 1- '  (1 - -  v~) -2,  
2 t 

c ( t* )  = 2 0 - ~ )  E~ q - ~)~ 

K ~)  ( t * ,  ~*) = E ~ i 2 z  ~_~)E~ (~--  ~ )  K~ (t - -  ~ .  �9 - -  T2) ~o, 
" ~2 (~ - ~2) ~ (t - ~ )  

K(~)(t *, "c*) = K2( t  - -  T 2, �9 - -  ~)~o,  

K(~ *, ~*) = K~(t  - -  T,, x - -  X,)T o, 

f* (z*,  t*) ~- 5" (t*) - -  g* (z*), /?~ (t*, ~*) = B a (t, "c) T o, 

6" ( t * )  -~ 6o + (I  - -  L~) (I + N*) 9~ (t*) ( I  - -  L~) P* (t*), 
t t 

L*(0 (t) = ~" 0) (T) K (0 (t, x) d~ (i = 0, t ,  2), N*o) (t) =- i o) (x) R~ (t, T) dr, 
1 1 

1 

A*p (z*, t*) = I 
- - 1  

O m i t t i n g  t h e  a s t e r i s k s  i n  t h e  n o t a t i o n s  f o r  
t h e  r e s o l v i n g  e q u a t i o n  o f  t h e  p r o b l e m  a s  

p (~*, L*) k* (z*, ~*) d~*. 

all quantities except for operators, we write 

c (t) (I - LD s (~, 0 + (I -- LD A*s (~ t) = / (z, 0, (3.1) 

where the function of contact pressures s(z, t) and the right-hand side of the equation 
f(z, t) are continuous with respect to time in L2[-I, i]; c(t) > 0 is a continuous function 
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of t; the kernels of Volterra operators L~ (i = i, 2) are either continuous or weakly sing- 
ular. The operator A* is fully continuous, self-conjugate, and positively defined from 
L2[-I, I] in L=[-I, i], where 

1 1 

--i --i 

We represent the solution of (3.1) as a series in eigenfunctions 
A * , w h i c h  c o r r e s p o n d  to  i t s  e i g e n v a l u e s  c~ i ( i  = 0, 1, 2 . . . .  ) [7,  8] :  

(~, 0 = E ~ (t) ~ (~>, / (z, t) = E / ~  (t) ~ (z); 
i=0 i=0  

(z) of the operator 

( 3 . 2 )  

A*qi(z) = ~i~i(z). (3.3) 

Substituting (3.2) into (3.1), we obtain 

t 

/i(t) f /i(T) R ~(t,~)d~ 
~i (t) - c (t) + ~-----~ + c (T~ + a i 

i 

{Ri(t, ~) is the resolvent of the kernel Ki(t, ~) = [c(t)K(1)(t, T) + ~iK(2)(t, ~)].[c(t) + 

ai]-l}. 
We have thus constructed the solution. It is worthwhile to briefly describe a proce- 

dure for finding eigenfunctions and eigenvalues of the operator A*. We take eigenfunctions 
and the kernel of the operator A* in the form {Pk*(Z) (k = 0, 1 .... ) is the basis of L 2 x 
[-i, 11}: 

= __ a K P .  (z), k(z,  ~) = (~). ( 3 . 4 )  (~) 

Now, on the basis of (3.3) and taking into account (3.4), we write a system of algebraic 
equations for determining the eigenvalues ~i and the coefficients of expansion of the eigen- 

functions a~ : 

i i (m 0, 1,2, .). 
r m n a n ~ i a m  = . .  

n=O 

Limiting the analysis to N terms of the basis Pk*(Z), we obtain the N-th approximation of 

the Bubnov--Galerkin method [9]. 

When the layers of the cylinder are made of the same aging viscoelastic material at 
the same point in time, the pretightening of the ring 6 o = 0 and the base profile is des- 
cribed by the function g(z) = 0. The creep has no effect on the stressed state of the 
cylinder. The problem solution coincides with the elastic one. 
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In conclusion, we will discuss some specifics of the numeric determination of the coef- 
ficients of expansion rmn of the contact problem kernel k(z, $). Taking for the basis an 

orthonorma! Legendre polynomial, we obtain, according to [4], expressions of this form: 

r ~ ( ~ )  = (--  l)~+n[(4m + t)(4n + t)11/~ L("----2-) JlI~+2~ ~ Jl/2+2~ du ( 3 . 5 )  
lL 2 

0 

(m, n = O ,  1, 2 . . . .  ) .  

C a l c u l a t i o n  o f  i n t e g r a l s  ( 3 . 5 )  a t  l a r g e  m and n r e q u i r e s  s p e c i a l  a n a l y s i s ,  b e c a u s e  t h e  
integrands oscillate rapidly. An effective numeric algorithm can be constructed on the 
basis of [i0]. We substitute the integrand as the product of the slow-varying and fast- 
varying functions. Suppose that for the fast-varying function K(x) the integral is taken 
in an explicit form. Dividing the integration limits into n parts and approximating the 
slow-varying function f(x) on each interval by its value at the center, we obtain 

b xi 

a { ~ l x i _  1 i = 1  

where x 0 = a , x n = b, K i i s  t h e  p r i m i t i v e  f u n c t i o n  K(x) a t  t h e  p o i n t  x i ,  f i  = f [ ( x i  + 
x i _ l ) / 2 ] .  A l l  t h e  n e c e s s a r y  e x p r e s s i o n s  f o r  t h e  p r i m i t i v e  f a s t - o s c i l l a t i n g  i n t e g r a n d  f u n c -  
t i o n s  f rom ( 3 . 5 )  can be found  in  [ 1 1 ] .  B e s i d e s ,  w i t h  t h e  above a l g o r i t h m  we can r e a d i l y  
d e t e r m i n e  t h e  f i n i t e  v a l u e  o f  t h e  uppe r  l i m i t  in  ( 3 . 5 ) ,  which  s a t i s f i e s  t h e  d e s i r e d  a c c u r a -  
cy  o f  c a l c u l a t i o n  o f  t h e  c o e f f i c i e n t s  rmn b e c a u s e  t h e  b e h a v i o r  o f  t h e  f u n c t i o n  L ( u ) ,  as  u § 
~, can e a s i l y  be a n a l y z e d .  

4. Example.  We w i l l  c o n s i d e r  a c y l i n d e r  w i t h  i n n e r  and o u t e r  l a y e r s  o f  a g i n g  v i s c o -  
e l a s t i c  m a t e r i a l .  The e l a s t i c  c h a r a c t e r i s t i c s  E l ,  9 i  ( i  = 1, 2) a r e  c o n s t a n t .  A measure  
o f  t h e  c r e e p  o f  t h e  m a t e r i a l  i s  e x p r e s s e d  by [5] 

Cl(t, T ) =  C2(t, T ) =  C(t, ~ ) =  [Co + A0exP(--~J]  { i -  e x p [ - - ? ( t -  ~)]}. ( 4 . 1 )  

We p r o c e e d  f rom t h e  f o l l o w i n g  v a l u e s  o f  t h e  p a r a m e t e r s  o f  t h e  t w o - l a y e r  c y l i n d e r  [5,  
12] :  E 1 = E 2 = 5"103 MPa, ~1 = v2 = 0 . 1 ,  C0E 1 = 0 . 5 5 2 2 ,  A0E 1 = 4, ab  -1 = 0 . 8 1 ,  ~ = 0 .031 
day -~ ,  ~ = 0 .06  day -1 ,  hs -1 = 0 . ] 1 ,  bs -1 = 10, c ( t )  = 0 .155 ,  P ( t )  = 1, g ( z )  = 0, 50 = 0, 
0 z ( t )  = 2 0 . 7 2 .  

Suppose that the outer layer is made at time zero and the inner layer 50 days later. 
The outer pressure is applied 65 days later (for dimensionless values x2 = 0, T I = 0.77). 
The curves in the figures for this case are identified by the index i. We will also examine 
the variant where the inner layer is made at time zero and the outer layer 50 days later, 
with the same load application time T 0 = 65 days, i.e., T l = 0, m 2 = 0.77. The curves are 
identified by the index 2. 
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Figure 2a illustrates the distribution of contact pressures under the ring for the 
two cases at different points in time. The unmarked curves show the stress distribution 
at the time when the external pressure is applied. Curves i and 2 describe the distribu- 
tion of contact pressures at t = 2. Figure 2b illustrates the variations of maximal and 
minimal contact pressures over time in these two cases. 

The plots show that, if the outer layer is younger than the inner layer, the stressed 
state under the ring levels out over time. In the opposite case, the nonuniformity increas- 

1 

The integral characteristic of contact pressures l(t) = j s(z, t)dz decreases slight- es. 

-I 

ly over time; for engineering calculations one can assume with an acceptable accuracy that 
l(t) = I(i). The effect of redistribution of contact pressures is the principle factor in 
this case. 

Let us now consider a cylinder with an outer layer made of a contact material and an 
inner layer of an aging viscoelastic material: EIE2 -~ = 0.025, ~i = 0.i, ~2 = 0.3, ab -l = 

0.81, C0E I = 0.5522, A0E I = 4, t 0 = 15 days, $ = 0.031 day -l , y = 0.06 day -I, hs -I = 0.06, 

bs -I = i0, c(t) = 1.36, 8(t) = 24.06, ~i = 0, P(t) = i, g(z) = 0, 6 o = 0. 

Figure 3a shows the distribution of contact pressures under the ring at the time of 
application of the external pressure t = i (curve i) and at t = 5 (2). Figure 3b describes 
the variations of maximum (i) and minimal (2) stresses under the ring and the integral char- 
acteristic l(t) of contact pressures over time. We see that over time the stress distribu- 
tion is evened out substantially and the stresses are considerably relaxed. Calculations 
reveal two tendencies in the formation of the stressed state under the ring: a tendency 
for a change in the contact stresses due to the inhomogeneity of the cylinder, and a ten- 
dency for a decrease in stresses by relaxation. The former tendency can manifest itself 
in two ways depending on the type of inhomogeneity. It is clearly seen in the first exam- 
ple, where the effect of relaxations is small. The second example illustrates the interac- 
tion of'the two tendencies. On one hand, the inhomogeneity of the material smoothes the 
distribution of contact stresses, with the maximal stresses diminishing and minimal stresses 
growing. On the other hand, contact stresses are reduced by relaxation. For maximal stress- 
es both tendenCies lead to a reduction in stresses. For minimal stresses, initially the 
former tendency is dominant, and stresses grow slightly. However, over time, the second 
tendency prevails and minimal stresses begin to decrease. 

The authors thank N. Kh. Arutyunyan for his assistance and interest in this work. 
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